Publications /
Opinion

Back
Beyond the Prompt: Why Context Engineering is the Real AI Revolution
Authors
Imad Hajjaji
November 27, 2025

The artificial intelligence landscape is undergoing a fundamental shift that most people haven’t yet noticed. While “prompt engineering” has dominated conversations about optimizing AI interactions, a more sophisticated paradigm is quietly emerging: context engineering. This evolution represents more than a semantic change; it signals a transformation in how we architect intelligent systems.

As Andrej Karpathy, former Director of AI at Tesla, explains: “In every industrial-strength LLM app, context engineering is the delicate art and science of filling the context window with just the right information for the next step.” [1] This distinction between casual AI use and production systems reveals why context engineering has become the critical skill that separates functional AI demos from transformative business applications.

From Simple Prompts to Sophisticated Context

Context engineering transcends the limitations of traditional prompt crafting in ways that fundamentally change how AI systems operate. Where prompt engineering focuses on asking the right question, context engineering creates the optimal environment for AI to identify and execute solutions autonomously. The distinction is profound: prompt engineering operates within the context window, while context engineering determines what fills that window [2].

According to groundbreaking research from the Chinese Academy of Sciences, context engineering represents “a formal discipline that transcends simple prompt design to encompass systematic optimization of information payloads for LLMs.” [3] This systematic approach addresses the fundamental challenge of modern AI applications: managing the delicate balance between information richness, computational constraints, and real-world complexity.

The shift reflects hard-won lessons from building production AI systems. As Philipp Schmid explains: “Context Engineering is the discipline of designing and building dynamic systems that provides the right information and tools, in the right format, at the right time, to give a LLM everything it needs to accomplish a task.” [4] This definition emphasizes three critical aspects: it is systematic rather than ad hoc, dynamic rather than static, and comprehensive rather than limited to text instructions.

Consider how this plays out in practice. When you ask an LLM to write an email, you’re doing prompt engineering. But when an AI assistant automatically drafts a personalized response to a customer complaint by accessing purchase history, previous support interactions, company policies, and current inventory levels, that is context engineering.

Contemporary context engineering therefore encompasses nine critical components that work together to create intelligent, context-aware systems [5]:

The differentiation between prototype AI applications and production-ready systems lies fundamentally in the quality of context. Research from Kubiya.ai demonstrates how context engineering transforms user experiences [6]. Consider the contrast between these scenarios. A basic AI assistant receives: “Schedule a meeting with the marketing team.” Without context, it replies: “When would you like to schedule this meeting?” 

A context-engineered system, however, operates with comprehensive environmental awareness. It knows your calendar, understands your role, has access to team availability, recognizes urgency based on recent communications, and is aware of company preferences. Its response becomes: “I’ve scheduled a marketing strategy session for Thursday 2-3 PM with Ali, Sara, and Omar based on your recent project discussions. The meeting room is booked and the agenda is prepared.”

This transformation—from reactive questioning to proactive solution delivery—exemplifies the production value of context engineering. The AI doesn’t just respond to requests; it anticipates needs, understands implications, and takes comprehensive action based on deep situational awareness.

Solving AI's Context Failures

What makes context engineering particularly revolutionary is its ability to address fundamental limitations that have long plagued AI systems. Traditional prompt-based approaches often suffer from “context failures,” situations where the AI lacks the information needed to make sound decisions [7]. These failures manifest as context poisoning, context distraction, context confusion, and context clash.

Context engineering solves these problems through systematic information architecture. Instead of relying on well-crafted prompts to elicit the right responses, it builds systems that actively curate, validate, and optimize the information environment. This includes relevance-scoring algorithms, contradiction-detection systems, information-freshness tracking, and dynamic context-window management.

Leading AI companies are implementing context-engineering principles at scale. Anthropic notes that “agents often engage in conversations spanning hundreds of turns, requiring careful context management strategies.” [8] This recognition underscores that the most challenging aspects of building production AI systems are not related to model capabilities, but to creating information architectures that enables performance.

The emergence of specialized frameworks such as LangGraph signals industry recognition of this paradigm’s importance [9]. These tools offer structured approaches to implementing the four core context-engineering strategies: write, select, compress, and isolate.

Context engineering represents more than a technical advancement; it embodies a fundamental shift toward intelligent, autonomous systems that operate with human-like situational awareness. For organizations implementing AI solutions designed to deliver value, context engineering isn’t optional.

The revolution is not in the prompts we write, but in the contexts we engineer.

References

[1] Andrej Karpathy, Context Engineering Discussion, 2025 www.github.com/davidkimai/Context-Engineering#context-engineering

[2] Drew Breunig, “Why ‘context engineering’ matters”, 2025 https://www.dbreunig.com/2025/07/24/why-the-term-context-engineering-matters.html 

[3] Lingrui Mei et al., “A Survey of Context Engineering for Large Language Models”, arXiv:2507.13334v1, 2025
https://arxiv.org/html/2507.13334v1

[4] Philipp Schmid, “The New Skill in AI is Not Prompting, It’s Context Engineering”, 2025
https://www.philschmid.de/context-engineering

[5] Tuana Çelik, Logan Markewich, “Context Engineering - What it is, and techniques to consider”, LlamaIndex, 2025
https:// www.llamaindex.ai/blog/context-engineering-what-it-is-and-techniques-to-consider

[6] Amit Eyal Govrin, “Context Engineering : The Hidden Blueprint Behind Reliable AI Agents in 2025”, Kubiya.ai, 2025
https://www.kubiya.ai/blog/context-engineering-ai-agents

[7] Lance Martin, “Context Engineering for Agents”, 2025
https://rlancemartin.github.io/2025/06/23/context_engineering/

[8] Anthropic, “Context Engineering for Agents”, LangChain Blog, 2025
https://blog.langchain.com/context-engineering-for-agents/

[9] LangChain Team, “The rise of context engineering”, LangChain Blog, 2025
https://blog.langchain.com/the-rise-of-context-engineering/ 

 

 

RELATED CONTENT

  • Authors
    August 3, 2020
    It was notthe way you would expect a scientist to be celebrated. InStyle, an American fashion magazine showed on its cover Anthony Fauci, America’s frontline warrior against the COVID-19 virus. Fauci has been director of the National Institute of Allergy and Infectious Diseases since 1984, and has been honored by presidents since Ronald Reagan, battling against HIV/Aids, SARS, swine flu, MERS, and Ebola. He is, BBC News stated, “the face of America’s fight agains ...
  • Authors
    August 3, 2020
    Le Registre social unique (RSU) est un mécanisme de ciblage social dont les avantages sont attendus par toutes les parties prenantes impliquées dans la réforme des filets sociaux. Son adoption n’est pas une fin en soi. Outil technique, il est au service d’une finalité première, celle de gérer l’affectation des ressources publiques consacrées à la lutte contre la pauvreté et la vulnérabilité, dans un double souci d’efficacité et d’équité. L’atteinte de cette finalité est conditionnée ...
  • Authors
    Jaime Bonet-Morón
    Diana Ricciulli-Marín
    Gerson Javier Pérez-Valbuena
    Luis Armando Galvis-Aponte
    Inácio F. Araújo
    Fernando S. Perobelli
    July 29, 2020
    The aim of this paper is to assess the regional economic impact of the lockdown measures ordered by the national government to prevent the spread of COVID-19. Using an input–output model, we estimate the economic loss of extracting groups of formal and informal workers from different economic sectors. Results show monthly economic losses that represent between 0.5% and 6.1% of national GDP, depending on the scenario considered. Accommodation and food services, real estate, administr ...
  • Authors
    July 28, 2020
    Le ciblage est un point de focalisation de l’impact social des programmes de lutte contre la pauvreté et des aides monétaires de l’Etat aux catégories sociales pauvres et vulnérables. La pratique du ciblage n’est pas récente dans la trajectoire des politiques publiques. Elle donne lieu à des controverses sur les méthodes appropriées pour atteindre les populations cibles ou les territoires prioritaires des politiques et programmes sociaux. Les difficultés du ciblage sont devenues le ...
  • Authors
    July 20, 2020
    There are signs of recovery in various parts of the global economy, starting in May, after the depressive dip imposed by Covid-19. Such signs emerged after the easing of restrictions on mobility established to flatten out the pandemic curves, and also reflected policies of flattening the recession curve (income transfers to part of the population, credit lines to vulnerable companies and others). Besides remaining far from giving back the GDP lost, in all countries, the r ...
  • Authors
    July 20, 2020
    This article was originally published on Bruegel. The global economy is showing signs of recovery from the economic crisis caused by COVID-19, though the spread of the coronavirus is accelerating in some countries. In this circumstance, policymakers must weigh up the trade-offs involved in dealing with the pandemic while easing lock downs and sustaining economic activity. Differences in age structures, urbanisation rates and other factors will inform decision making in different co ...
  • July 15, 2020
    في فبراير 2020 نشر كاتب هذه الأوراق مؤلفه حول موضوع «نحن و العولمة » حيث تساءل عن جواب الجنوب اتجاه التحولات الكبرى التي تعرفها هذه الأخيرة 1. تعبر الكلمات المفاتيح لهذه الأوراق )الهشاشة، التشظي، اللايقين، غير المتوقع، الهلع، السمعة، الصحة، البيئة، التكافؤ، الأقلمة، استعادة التموقع، الإختبار، الفرص(، عن المشاعر الشائعة عالميا خال شهور الحجر الصحي الذي فرضته جائحة كفيد 19 و ما نتج عنها من انكماش كبير للإقتصاد. عرف العالم مند بداية القرن ثاث هزات هائلة : الأولى جيوسياسية ) 11 شتنبر 20 ...
  • July 14, 2020
    La propagation de la COVID-19 à l’échelle mondiale a provoqué un état de peur et d’anxiété généralisé, d’abord en raison des craintes d’infection et de l’angoisse de la mort, puis à cause des incertitudes durables autour de la nature de l’épidémie, ses modes de transmission, son degré de férocité, et l’efficacité des protocoles d’intervention thérapeutiques permettant de sauver les contaminés. Il convient de distinguer deux situations souvent confondues : D’une part, les effets psyc ...
  • July 14, 2020
    عد تفشي فيروس كورونا المستجد في جل مناطق العالم، اختلفت طرق التصدي له من دولة إلى أخرى. حيث اعتمدت الدول قرارات متفاوتة من حيث الصرامة في ظل الحد من تفشي هذا الوباء. وفي نفس الصدد، اتُخذت عدة قرارات لدعم المواطنين لكي يتاح لهم المرور من هذه الأزمة بأقل الأضرار الممكنة في مختلف القطاعات ...